Home
Class 12
MATHS
Let bar(a),bar(b) be two non-collinear u...

Let `bar(a),bar(b)` be two non-collinear unit vectors, if `bar(alpha) = bar(a) -(bar(a).bar(b))bar(b)` and `bar(beta) = bar(a) xx bar(b),` then show that `|bar(beta)| = |bar(alpha)|`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a).bar(b) = bar(a).bar(c ) and bar(a) xx bar(b) = bar(a) xx bar(c ), bar(a) != 0 , then show that bar(b) = bar(c ) .

If bar(a) and bar(b) be non collinear vectors such that |bar(a)times bar(b)|=bar(a).bar(b) then the angle between bar(a) and bar(b) is

Let bar(a) , bar(b) be non-collinear vectors. If alpha = (x+4y)bar(a)+(2x+y+1)bar(b), beta = (y-2x+2)bar(a)+(2x-3y-1)bar(b) are such that 3alpha = 2beta then find x, y.

If bar(a) is a unit vector then bar(a)xx{bar(a)xx(bar(a)xxbar(b))}

If bar(a) is a unit vector then bar(a)xx{bar(a)xx(bar(a)xxbar(b))=

For non -zero vectors a and b if |bar(a)+bar(bar(b))|<|bar(a)-bar(b)|| then bar(a) and bar(b) are

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

The non-zero vectors bar(a) , bar(b) , bar(c ) holds | (bar(a) .bar(b) ).bar( c) |=| bar(a) ||bar(b)|| bar( c) if

If bar(a), bar(b) are two non-collinear vectors such that bar(a)+2bar(b) and bar(b)-lambdabar(a) are collinear, find lambda .

bar(a) and bar(b) are non-collinear vectors. If bar(c)=(x-2)bar(a)+bar(b) and bar(d)=(2x+1)bar(a)-bar(b) are collinear, then find the value of x.