Home
Class 10
MATHS
Prove the following: sec^6 x - tan^6 x ...

Prove the following:
`sec^6 x - tan^6 x = 1 + 3sec^2 x xx tan^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : sec^6 x - tan^6 x = 1 + 3 sec^2 x times tan^2 x

Solve the following: tan^2x+sec^2x=3

Prove the following: tan 4x =(4tan x (1-tan^2x))/(1-6 tan^2x + tan^4x)

Find the particular solution of the following : sec^(2)x tan y dx - sec^(2)y tan x dy = 0 , given that y= pi/6, x= pi/3 .

Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx

int tan^(6)x. sec^(2)x dx =

Integrate the following functions: tan^3 2x sec(2x)

Prove the following identity : (1 - tan x)^2+(1 -cot x)^2 = (sec x -cosec x)^2 .

Evaluate the following: int frac{sec^2 x}{2tan^2x + 3 tan x +3} dx

Prove that :sec^(6)x-tan^(6)x-3sec^(2)x" ."tan^(2)x=1