Home
Class 12
MATHS
f:(0,oo)rarr[0,oo)" defined by "f(x)=x^(...

f:(0,oo)rarr[0,oo)" defined by "f(x)=x^(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=x^(3)

f:(0,oo)rarr(0,oo) defined by f(x)={2^(x),x in(0,1)5^(x),x in[1,oo) is

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

f: [0, oo) rarr [4, oo) is defined by f(x)=I^(2)+4 then f^(-1)(13)=

Which of the following functions is one-one? (1)f:R rarr R defined as f(x)=e^(sgnx)+e^(x^(2))(2)f:[-1,oo)rarr(0,oo) defined by f(x)=e^(x^(2)+|x|)(3)f:[3,4]rarr[4,6] defined f(x)=|x-1|+|x-2|+|x-3|+x-4| (4) f(x)=sqrt(ln(cos(sin x)))

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .

Consider the function f:(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1);0

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

Consider the function f(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-a)/(x^(2)+a), agt0 which of the following is not true?