Home
Class 9
MATHS
" (逆) "[(3)/(2)x+1]^(3)quad sqrt(" (iv) ...

" (逆) "[(3)/(2)x+1]^(3)quad sqrt(" (iv) ")[x-(2)/(3)y]^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following expressions are polynomials ? In case of a polynomial , write its degree. (i) x^(5)-2x^(3)+x+sqrt(3) (ii) y^(3)+sqrt(3)y (iii) t^(2)-(2)/(5)t+sqrt(5) (iv) x^(100)-1 (v) (1)/(sqrt(2))x^(2)-sqrt(2)x+2 (vi) x^(-2)+2x^(-1)+3 (vii) 1 (viii) (-3)/(5) (ix) (x^(2))/(2)-(2)/(x^(2)) (x) root(3)(2)x^(2)-8 (xi) (1)/(2x^(2)) (xii) (1)/(sqrt(5))x^(1//2)+1 (xiii) (3)/(5)x^(2)-(7)/(3)x+9 (xiv) x^(4)-x^(3//2)+x-3 (xv) 2x^(3)+3x^(2)+sqrt(x)-1

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

y = tan ^ (- 1) [(3x-x ^ (3)) / (1-3x ^ (2))], - (1) / (sqrt (3))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Which of the following expressions are not polynomials? x^(2)+2x^(-2) (ii) sqrt(ax)+x^(2)-x^(3)3y^(3)-sqrt(5y)+9( iv) ax^((1)/(2))+ax+9x^(2)+43x^(-2)+2x^(-1)+4x+5

Assuming that x,y are positive real numbers, simplify each of the following: sqrt(x^(-2)y^(3))(ii)(x^(-2)*y^(-(1)/(2)))^(2)(sqrt(x^(-3)))^(5)( iv) sqrt((x))^(-(2)/(3))sqrt(y^(4))+sqrt(xy^(-(1)/(2)))root(3)(xy^(2))-:x^(2)y(vi)root(3)(x^(2))