Home
Class 12
MATHS
If f(a+b-x)=f(x) , then inta bf(x)dx is ...

If `f(a+b-x)=f(x)` , then `inta bf(x)dx` is equal to (A) `(a+b)/2inta bf(b-x)dx` (B) `(a+b)/2inta bf(b+x)dx` (C) `(b-a)/2inta bf(x)dx` (D) `(a+b)/2inta bf(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a+b-x) = f(x) , then int_a^b x f(x) dx is equal to:

If f(a+b-x) = f(x), then int_a^b xf(x) dx =

If f(a + b - x) = fx , then int_a^b x f(x) dx is equal to :

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

If f(a+b-x)=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

If f(a+b-x0=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot