Home
Class 12
MATHS
यदि f(x)=2xsqrt(1-x^(2)), तो सिद्ध कीजिए...

यदि `f(x)=2xsqrt(1-x^(2))`, तो सिद्ध कीजिए -
`f("sin"(theta)/(2))=sintheta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2xsqrt(1-x^(2)) , then show that f(sin""(x)/(2))=sinx .

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

f(x)=sin^(-1)(2xsqrt(1-x^2)) then f'(x)=

f(theta)=int_0^1 (x+sin theta)^2 dx

If f(x)=(1-x^(2))/(1+x^(2)) , then prove that: f(tan theta)=cos 2theta

If f(x)=(1-x^(2))/(1+x^(2)) , then prove that: f(tan theta)=cos 2theta

यदि triangleABC में (If इन triangleABC), a = (1)/(sqrt(6)-sqrt(2)), b = (1)/(sqrt(6)+sqrt(2)), C = 60^(@) तो सिद्ध कीजिए कि (Prove that) c = (sqrt(4))/(2) .

If f(x)=(2x)/(1+x^2)\ , show that f(tantheta)=sin2theta)

If f(x)=(2x)/(1+x^2)\ , show that f(tantheta)=sin2theta)