Home
Class 12
MATHS
Let f(x) = {(sin (tan^(-1) x) + sin (cot...

Let `f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1`, where `|x| gt 1` and `dy/dx = 1/2 d/dx (sin^(-1) f(x))`. If `y(sqrt3) = pi/6` then `y( -sqrt3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

d/dx [tan^(-1)x + sin^(-1) (x/(sqrt(1+x^(2))))] =

(d)/(dx) {Sin ^(-1) ""(sqrt((1-x)/2)}=

(d)/(dx ) {Sin ^(-1) ""(x)/( sqrt(1+ x^(2)))}=

Differentiate sin^(-1)x + sin^(-1) sqrt(1 - x^2) w.r.t.x.

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is