Home
Class 12
MATHS
Let f:(-1,oo) rarr R be defined by f(0)=...

Let `f:(-1,oo) rarr R` be defined by `f(0)=1` and `f(x)=1/x log_(e)(1+x), x !=0`. Then the function f:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(e,oo)rarr R be defined by f(x)=ln(ln(In x)), then

f:(-oo,oo)rarr(0,1] defined by f(x)=(1)/(x^(2)+1) is

Let f:(-oo,-1)rarr R-{1} is defined as f(x)=(x)/(x+1) Find f^(-1)(x)

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

Let f(0,oo) rarr (-oo,oo) be defined as f(x)=e^(x)+ln x and g=f^(-1) , then find the g'(e) .

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is