Home
Class 12
MATHS
int0^(pi/2)(sqrt(cotx))/(sqrt(tanx)+sqrt...

`int_0^(pi/2)(sqrt(cotx))/(sqrt(tanx)+sqrt(cotx))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definte, prove that int_(0)^(pi//2)(sqrt(cotx))/(sqrt(tanx)+sqrt(cotx))=(pi)/4

I : int_(0)^(pi//2)(sqrtcotx)/(sqrt(tanx)+sqrt(cotx))dx=(pi)/(4) II : int_(0)^(pi//2)(2sinx+3cosx)/(sinx+cosx)dx=(pi)/(4)

Evaluate the following : int_(0)^(pi//2)(sqrt(tanx))/(sqrt(tanx)+sqrt(cotx))dx

Evaluate the following integral: int_0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ )+sqrt(tanx))dx

Evaluate the following integral: int_0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ )+sqrt(tanx))dx

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

int(sqrt(tanx) + sqrt(cotx))dx =