Home
Class 12
MATHS
वक्र b^(2)x^(2)+a^(2)y^(2)=a^(2)b^(2) और...

वक्र `b^(2)x^(2)+a^(2)y^(2)=a^(2)b^(2)` और `m^(2)x^(2)-y^(2)l^(2)=l^(2)m^(2)` एक-दूसरे को समकोण पर काटते है, यदि-

Promotional Banner

Similar Questions

Explore conceptually related problems

Curve b^(2)x^(2) + a^(2)y^(2) = a^(2)b^(2) and m^(2)x^(2)- y^(2)l^(2) = l^(2)m^(2) intersect each other at right-angle if:

Curve b^(2)x^(2) + a^(2)y^(2) = a^(2)b^(2) and m^(2)x^(2)- y^(2)l^(2) = l^(2)m^(2) intersect each other at right-angle if:

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

The equation of the line common to the pair of lines (p^(2)-q^(2)) x^(2)+(q^(2)-r^(2)) x y+(r^(2)-p^(2)) y^(2)=0 and (l-m) x^(2)+(m-n) x y+(n-l) y^(2)=0 is

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(l^(2))-(y^(2))/(m^(2))=1 cut each other orthogonally then....

If y - mx = sqrt(a^(2) m^(2) + b^(2)) and x + my = sqrt(a^(2) + b^(2) m^(2)) , then prove that x^(2) + y^(2) = a^(2) + b^(2)

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .

If 2y + (1)/(2y) = l and 2y - (1)/(2y) = m , then l^(2) - m^(2) = "______" .

If the curves (x^(2))/(l^(2))+(y^(2))/(m^(2))=1 and (x^(2))/(64)+(y^(2))/(25)=1 cut each other orthogonally then l^(2)-m^(2)