Home
Class 11
MATHS
If x^(y)=e^(x-y), show that (dy)/(dx)=(y...

If `x^(y)=e^(x-y),` show that `(dy)/(dx)=(y(x-y))/(x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

if e^(x+y)=xy, show that (dy)/(dx)=(y(1-x))/(x(y-1))

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=