Home
Class 12
MATHS
(prove that) If the polar of the points ...

(prove that) If the polar of the points on the circle
`x^(2) + y ^(2) = a^(2)` with respect to the circle
` x^(2) + y^(2) = b^(2)` touches the circle `x^(2) + y^(2) = c^(2) `
then prove that a, b, c, are in Geometrical
progression.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the chord of contact of tangents from a point on the circle x^(2) + y^(2) = a^(2) to the circle x^(2)+ y^(2)= b^(2) touches the circle x^(2) + y^(2) = c^(2) , then a, b, c are in-

If the chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)+y^(2)=a^(2) to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=c^(2), then prove that a,b and c are in GP.

If the polar of a point (p,q) with respect to the circle x^(2)+y^(2)=a^(2) touches the circle (x-c)^(2)+(y-d)^(2)=b^(2), then

If the polar of a point (p,q) with respect to the circle x^2 +y^2=a^2 touches the circle (x-c)^2 + (y-d)^2 =b^2 , then

If the circle x^(2) + y^(2) = 9 touches the circle x^(2) + y^(2) + 6y + c = 0 internally, then c is equal to

The pole of a straight line with respect to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=9a^(2) . If the straight line touches the circle x^(2)+y^(2)=r^(2) , then

If the pole of the polar w.t.the circle x^(2)+y^(2)=c^(2) is on the circle x^(2)+y^(2)=9c^(2) Then this polar will be the tangent of the circle