Home
Class 12
MATHS
If A=[[6,11],[2,4]] then the determinant...

If A=`[[6,11],[2,4]]` then the determinant of `A^2015-6A^2014` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Matrix A is given by A=[[6,11],[2,4]] then the determinant of A^(2015)-6A^(2014) is

If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005)-6A^(2004) is

If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005)-6A^(2004) is

If matrix A is given by A=[[6,112,4]], then the determinant of A^(2005)-6A^(204) is 2^(2006)b(-11)2^(2005)c.-2^(2005)d.(-9)2^(2004)

If matrix A is given by A=[[6,112,4]] then determinant of A^(2005)-6A^(2004) is

If matrix A is given by A=|[6, 11], [2, 4]| , then the determinant of A^(2005)-6A^(2004) is a. 2^(2006) b. (-11)2^(2005) c. -2^(2005) d. (-9)2^(2004)

If matrix A is given by A=|[6, 11], [2, 4]| , then the determinant of A^(2005)-6A^(2004) is a. 2^(2006) b. (-11)2^(2005) c. -2^(2005) d. (-9)2^(2004)

If A=[[-4,-13]] ,then the determinant of the matrix (A^(2016)-2A^(2015)-A^(2014)) is (A) 2014(B)-175(C)2016(D)-25

If {:A=[(-4,-1),(3,1)]:} , then the determint of the matrix (A^2016-2A^2015-A^2014) ,is

If {:A=[(-4,-1),(3,1)]:} , then the determint of the matrix (A^2016-2A^2015-A^2014) ,is