Home
Class 12
MATHS
If f(x)=x^3+4x^2+ax+5 is a monotonically...

If `f(x)=x^3+4x^2+ax+5` is a monotonically decreasing function of x in the largest possible interval `(-2,-2//3), then the value of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+4x^(2)+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2//3) . Then

If f(x) = x^(3) + 4x^(2) + lambda x + 1 is a monotonically decreasing function of x in the largest possible interval (-2, -2/3). Then

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a ) lambda=4 (b) lambda=2 (c) lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a ) lambda=4 (b) lambda=2 (c) lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a ) lambda=4 (b) lambda=2 (c) lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a) lambda=4 (b) lambda=2 lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then lambda=4 (b) lambda=2 lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a) lambda=4 (b) lambda=2 lambda=-1 (d) lambda has no real value

If f(x)=x^(3)+4x^(2)+lambda x+1 is a monotonically decreasing function of x in the largest possible interval (-2,-(2)/(3)). Then lambda=4( b) lambda=2 lambda=-1(d)lambda has no real value