Home
Class 12
MATHS
The value of the integral int(0)^(1){4t^...

The value of the integral `int_(0)^(1){4t^(3)(1+t)^(8)+8t^(4)(1+t)^(7)}dt` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(sin t)/(1+t)dx=alpha, then the value of the integral int_(4 pi-2)^(4 pi)(sin(t)/(2))/(4 pi+2-t)dt is 2 alpha(2)-2 alpha(3)alpha(d)-alpha

If int_(0)^(1)(sint)/(1+t)dt=alpha , them the value of the integral int_(4pi-2)^(4pi)("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

If int_0^1(sint)/(1+t)dt=alpha, then the value of the integral int_(4pi-2)^(4pi)(sin(t/2))/(4pi+2-t)dt is (1) 2alpha (2) -2alpha (3) alpha (4) -alpha

If int_0^1(sint)/(1+t)dt=alpha, then the value of the integral int_(4pi-2)^(4pi)(sin(t/2))/(4pi+2-t)dt is (1) 2alpha (2) -2alpha (3) alpha (4) -alpha

If (1 sin t)/(1 + t) dt = alpha , then that value of the integral : int_(4pi - 2)^(4pi) (sin t/2)/(4pi + 2 - t) dt in terms of alpha is given by :

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)