Home
Class 11
MATHS
Find lim(x rarr 3)f(x),where f(x)=[|x-3|...

Find `lim_(x rarr 3)f(x),where f(x)=[|x-3|]/[x-3] ,xne3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(x rarr 0) f(x) , where f (x) =|x|-5.

Find lim_(x to 2)f(x) , where f(x) = 3|x| - 2

Verify the existence of lim_(x to 3) f(x) , where f(x)={:{(|x-3|/(x-3),for , xne 3),(0, for ,x =3):}

Find lim_(x rarr0)f(x) and lim_(x rarr1)f(x), where f(x)=[(2x+3),x 0

lim_(x rarr0)f(x)and(lim)_(x rarr1)f(x), where f(x)=[2x+3,x 0

find lim_(x rarr3)f(x) where f(x)=4,x>3 and f(x)=x+1,x<3

Find lim_(x rarr 0) f(x) where f(x) = {(2x+3,xle0),(3(x+1),xgt0):}

Find lim_(x rarr 0)f(x) and lim_(x rarr 1) f(x) , where f(x)={(2x+3,xle0),(3(x+1),x>0):}

Find lim_(xrarr0) f(x) where f(x)={{:((x)/(|x|),xne0),(0,x=0):}

Evaluate lim_(x rarr 0) f(x) and lim_(x rarr 1) f(x), where f(x) = { (2x + 3 , x le 0) , (3(x+1) , x gt 0)}