Home
Class 11
MATHS
If (1-sinA)(1-sinB)(1-sinC)=(1+sinA)(1+s...

If `(1-sinA)(1-sinB)(1-sinC)=(1+sinA)(1+sinB)(1+sinC)`, then prove that each side is equal to `+-cosAcosBcosC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-sinA)(1-sinB)(1-sinC)=(1+sinA)(1+sinB)(1+sinC) , then show that each side is equal to +-cosAcosBcosC .

If (1+sinA)( 1+sinB)(1+sinC) = (1-sinA)(1-sinB)(1-sinC), then prove that the value of each side = +-cos A cosB cosC ,

(1+sinA)(1+sinB)(1+sinC) = (1-sinA)(1-sinB)(1-sinC) = k rArr k =

If (1+sinA)(1+sinB)(1+sinC)=(1-sinA) (1-sinB)(1-sinC)," then prove that "(1-sinA) (1-sinB)(1-sinC)=pmcosA.cosB.cosC .

If (1+sinA)(1+sinB)(1+sinC)=(1-sin-A) (1-sinB)(1-sinC)," then prove that "(1+sinA) (1-sinB)(1-sinC)=pmcosA.cosB.cosC .

If sinA sinB sinC+cosAcosB=1, then the value of sinC is

If sinA sinB sinC+cosAcosB=1, then the value of sinC is

If in a !ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then