Home
Class 11
MATHS
Prove that: (sinA+sinB)/(sinA-sinB) = ...

Prove that:
`(sinA+sinB)/(sinA-sinB) = tan(A+B)/(2). Cot(A-B)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sinA + sinB)/(cosA + cosB)= tan((A+B)/2)

Prove that : (sinA+sinB)/(cosA+cosB)= tan frac (A+B)(2) .

Prove that (sinA+sinB)/(cosA+cosB)=tan((A+B)/2)

Prove that a sinA - b sinB = c sin(A-B)

Prove that : 2 sinA sinB = cos (A-B) -cos (A + B).

Prove that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2),ifni se v e n0,ifni sod d,

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2),ifni se v e n0,ifni sod d,

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2),ifni se v e n0,ifni sod d,

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2) ,if n is even, 0 if n is odd,