Home
Class 12
MATHS
Let P(a sectheta, btantheta) and Q(asec...

Let `P(a sectheta, btantheta) and Q(aseccphi , btanphi)` (where `theta+phi=pi/2` be two points on the hyperbola `x^2/a^2-y^2/b^2=1` If `(h, k)` is the point of intersection of the normals at `P and Q` then `k` is equal to (A) `(a^2+b^2)/a` (B) `-((a^2+b^2)/a)` (C) `(a^2+b^2)/b` (D) `-((a^2+b^2)/b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(asectheta, btantheta) and A(asecphi, btanphi) , where theta+phi=(pi)/(2) , be two points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . If (h, k) is the point of intersection of normals at P and Q. then k is equal to

Let P (a sec theta, b tan theta) and Q (a sec phi, b tan theta) where theta+phi=pi/2 , be two points on the hyperola x^(2)/a^(2)-y^(2)/b^(2)=1 , If (h,k) is the point of intersection of normals of P and Q then find the value of k.

Let P(a sec theta,b tan theta) and Q(a sec varphi, b tan varphi) where theta+varphi=(pi)/(2) be two points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . If (h, k) is the point of intersection of the normals at P and Q , then k=

Let P(a sec theta , b tan theta ) and Q(a sec phi , b tan phi) where theta + phi = (pi)/(2) be two point on the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) =1 .If ( h, k) be the point of intersection of the normals at P and Q , then the value of k is -