Home
Class 12
MATHS
Let f(x) = x cos^(-1)(sin-|x|), x in (-...

Let `f(x) = x cos^(-1)(sin-|x|)`, `x in (-pi/2,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=e^(cos^(-1)sin(x+ pi/3)) , then

Let f(x) = e^(cos^(-1)sin(x + pi//3)) , Then :

Let f(x)=e^(cos^(-1)sin(x+pi//3)) then

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

Let f(x)=e^(cos^-1sin(x+pi/3)) , then

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to