Home
Class 12
MATHS
Find the value of k if f(x) is continuou...

Find the value of `k` if `f(x)` is continuous at `x=pi//2` , where `f(x)={(kcosx)/(pi-2x),\ \ \ x!=pi//2 3,\ \ \ x=pi//2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of k if f(x) is continuous at x=pi/2, where f(x)={(k cos x)/(pi-2x),quad x!=pi/23,quad x=pi/2

If f(x) is continuous at x=pi/2 , where f(x)=(1-sin x)/((pi-2x)^(2)) , for x != pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(1-sin x)/((pi/2 -x)^(2)) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=pi/4 , where f(x)=(1+cos 2x)^(4sec 2x) , for x!= pi/4 , then f(pi/4)=

Find the value of k so that the function f is continuous at x=pi//2,f(x)={:{((kcosx)/(pi-2x)", if "x!=(pi)/(2)),(5", if "x=(pi)/(2)):}