Home
Class 12
MATHS
A unit vector veca in the plane of vecb=...

A unit vector `veca` in the plane of `vecb=2hati+hatj` and `vecc=hati-hatj+hatk` is such that angle between `veca` and `vecd` where `vecd=vecj+2veck` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A unit vector veca in the plane of vecb=2hati+hatj and vecc=hati-hatj+hatk is such that angle between veca and vecd is same as angle between veca and vecb where vecd=vecj+2veck . Then veca is

Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj + hatk is such that it is equally inclined to vecb and vecd " where " vecd= hatj + 2hatk the value of hata is

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.vecc = 2 and veca xx vecc = vecb

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=