Home
Class 12
MATHS
यदि tan^(-1)x+tan^(-1)y+tan^(-1)z=pi तब ...

यदि `tan^(-1)x+tan^(-1)y+tan^(-1)z=pi` तब `(1)/(xy)+(1)/(yz)+(1)/(zx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=0 then the value of (1)/(xy)+(1)/(yz)+(1)/(zx)is(x,y,z!=0)

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1)x +tan^(-1) y +tan^(-1) z=pi/2 . Show that xy+yz+zx =1.

" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)(x+y+z-xyz)/(1-xy-yz-zx)