Home
Class 12
MATHS
In a quadrilateral A B C D , vec A C is ...

In a quadrilateral `A B C D , vec A C` is the bisector of ` vec A Ba n d vec A D` , angle between ` vec A Ba n d vec A D` is `2pi//3` , `15| vec A C|=3| vec A B|=5| vec A D|dot` Then the angle between ` vec B Aa n d vec C D` is `cos^(-1)(sqrt(14))/(7sqrt(2))` b. `cos^(-1)(sqrt(21))/(7sqrt(3))` c. `cos^(-1)2/(sqrt(7))` d. `cos^(-1)(2sqrt(7))/(14)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is (a) cos^(-1)(sqrt(14)/(7sqrt(2))) b. cos^(-1)(sqrt(21)/(7sqrt(3))) c. cos^(-1)(2/(sqrt(7))) d. cos^(-1)((2sqrt(7))/(14))

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a+ vec b+ vec c= vec0,\ vec|a|=3,\ | vec b|=5\ a n d\ | vec c|=7 find the anglebetweeen vec a\ a n d\ vec b

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is pi/6 b. pi/4 c. pi/3 d. pi/2