Home
Class 12
MATHS
In any triangle ABC, if (cosB+ 2 cosA)/(...

In any triangle ABC, if `(cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA)` then prove that, the triangle is either isosceles or right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If (cosA + 2cosC) : (cosA + 2cosB) = sinB : sinC prove that the triangle either isosceles or right angled.

If a cosA=b cos B then prove that Delta ABC is either isosceles or right angled.

If a cosA=b cos B , then prove that either the triangle is isosceles or right triangle.

In a DeltaABC " if " a cosA=bcosB the prove that triangle is either isosceles or right angled .

In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that the triangle in an isosceles right angled.