Home
Class 12
MATHS
Tangents are drawn to the hyperbola x^2/...

Tangents are drawn to the hyperbola `x^2/9-y^2/4=1` parallet to the sraight line `2x-y=1.` The points of contact of the tangents on the hyperbola are (A) `(2/(2sqrt2),1/sqrt2)` (B) `(-9/(2sqrt2),1/sqrt2)` (C) `(3sqrt3,-2sqrt2)` (D) `(-3sqrt3,2sqrt2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

sin 75^(@)= ..................... A) (2- sqrt3)/(2) B) (sqrt3+1)/(2sqrt2) C) (sqrt3-1)/(-2sqrt2) D) (sqrt3-1)/(2sqrt2)

The distance between the directrices of the hyperbola x^(2)-y^(2)=9 is a) 9/(sqrt(2)) b) 5/(sqrt(3)) c) 3/(sqrt(2)) d) 3sqrt(2)

(1)/(sqrt(9)-sqrt(8)) is equal to: 3+2sqrt(2)(b)(1)/(3+2sqrt(2)) (c) 3-2sqrt(2)(d)(3)/(2)-sqrt(2)

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

Simplify : 1/(sqrt2+sqrt3)-(sqrt3+1)/(2+sqrt3)+(sqrt2+1)/(3+2sqrt2)

The eccentricity of the hyperbola x^(2)-4y^(2)=1 is a.(sqrt(3))/(2) b.(sqrt(5))/(2) c.(2)/(sqrt(3))d.(2)/(sqrt(5))

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1