Home
Class 12
MATHS
If a hyperbola passes through the foci ...

If `a` hyperbola passes through the foci of the ellipse `(x^2)/(25)+(y^2)/(16)=1` . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is `(x^2)/9-(y^2)/(16)=1` b. the equation of hyperbola is `(x^2)/9-(y^2)/(25)=1` c. focus of hyperbola is (5, 0) d. focus of hyperbola is `(5sqrt(3),0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

A hyperbola passes through a focus of the ellipse (x^(2))/(169)+(y^(2))/(25)=1. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse.The product of eccentricities is 1. Then the equation of the hyperbola is

If a hyperbola passes through the foci of the ellipse x^2/25+ y^2/16=1 and, its transverse and conjugate axes coincide with the major and minor axes of the ellipse and product of their eccentricities be 1, then the equation of hyperbola is :

If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/16=1 and its transverse and conjugate gate axis coincides with the major and minor axis of the ellipse, and product of their eccentricities is 1, then

A hyperbola passes through a focus of the ellips (x^(2))/(169) +(y^(2))/( 25) =1 . Its transverse and conjugates axes coincide respectively with the major and minor axes of the ellips The product of eccetricities is 1. Then the equation of the hyperbola is

If a hyperbola passes through a focus of the ellipse (x^(2))/(25)+(y^(2))/(16) =1 and its transverse and conjugate axes coincide with major and minor axes of the ellipse and the product of their eccentricities is 1, then the equation of hyperbola is

Let a hyperbola passes through the focus of the ellipse (x^(2))/(25)+(y^(2))/(16)=1 . The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the product of eccentricities of given ellipse and hyperbola is 1, then

Let a hyperbola passes through the focus of the ellipse (x^(2))/(25)+(y^(2))/(16)=1 . The transverse and conjugate axes of this hyperbola coincide with the major and minor axis of the given ellipse. Also, the product of the eccentricities of the given ellipse and hyperbola is 1. Then,