Home
Class 11
MATHS
If sqrt((log)2x)-0. 5=(log)2sqrt(x ,) th...

If `sqrt((log)_2x)-0. 5=(log)_2sqrt(x ,)` then `x` equals odd integer (b) prime number composite number (d) irrational

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt((log)_2x)-0. 5=(log)_2sqrt(x ,) then x equals (a)odd integer (b) prime number composite number (d) irrational

If sqrt(log_(2)x)-0.5=log_(2)sqrt(x), then x equals odd integer (b) prime number composite number (d) irrational

The number (log)_2 7 is (1990, 2M) ,a) an integer (b) a rational number ,c) an irrational number (d) a prime number

The number log _(2)7 is (1990,2M) an integer (b) a rational number an irrational number (d) a prime number

Let x and y be positive numbers such that log_(9)x=log_(12)y=log_(16)(x+y) where x

The number (log)_2 7 is (1990, 2M) (a) an integer (b) a rational number (c) an irrational number (d) a prime number

Let N=((log)_3 135)/((log)_(15)3)-((log)_3 5)/((log)_(405)3)dot Then N is a natural number (b) a prime number an even integer (d) an odd integer

The equation (log)_(x+1)(x- .5)=(log)_(x-0. 5)(x+1) has (A) two real solutions (B) no prime solution (C) one integral solution (D) no irrational solution

The equation (log)_(x+1)(x- .5)=(log)_(x-0. 5)(x+1) has (A) two real solutions (B) no prime solution (C) one integral solution (D) no irrational solution