Home
Class 12
MATHS
If the greatest valueof |z| such that |...

If the greatest valueof `|z| ` such that `|z-3-4i|lea` is equal to the least value of `(x^4+x^2+ 5)/x i n(0,oo) then a=` (A) 1 (B) 4 (C) 3 (D) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If the greatest valueof |z| such that |z-3-4i|lea is equal to the least value of x^4+x+ 5/x in (0,oo) then a= (A) 1 (B) 4 (C) 3 (D) 2

Least value of |z-2|+|z-4i| is

Least value of |z-2|+|z-4i| is

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i| leq 1 and m and n be the least and greatest values of |z| and K be the least value of (x^4+x^2+4)/x on the interval (0,oo) , then K=

If |z-4+3i| leq 1 and m and n be the least and greatest values of |z| and K be the least value of (x^4+x^2+4)/x on the interval (0,oo) , then K=

If |z-4+3i|<=1 and m and n be the least and greatest values of |z| and K be the least value of (x^(4)+x^(2)+4)/(x) on the interval (0,oo), then K=

5.The value of (i^(4x+1)-i^(4x-1))/(2) is equal to (a) 1 (b) -1 (c) -i (d) 0