Home
Class 12
MATHS
If (logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y...

If `(logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y)` show that `x^(x)y^(y)z^(z)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If logx/(y-z)=logy/(z-x)=logz/(x-y) prove that xyz=1

If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y) , then prove that (i) x^(x) . y^(y) . z^(z) = 1 .

If (logx)/(q-r)= (logy)/(r-p)=(logz)/(p-q) prove that x^(q+r).y^(r+p).z^(p+q)=x^p.y^q.z^r

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) ,then the value of x^(b+c).y^(c+a).z^(a+b) is