Home
Class 12
MATHS
l, m,n are the p^(th), q ^(th) and r ^(t...

l, m,n are the `p^(th), q ^(th) and r ^(th)` term of a G.P. all positive, then `|{:(logl, p, 1),(log m, q, 1),(log n ,r,1):}|` equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

If l, m, n are the p^(th), q^(th), r^(th) terms of a G.P which are +ve, then |(log l,p,1),(log m ,q,1),(log n ,r,1)|=

l,m,n are the pth , qth rth terms of a G.P. (all positive) , then |(log l,p,1),(logm,q,1),(logn,r,1)| equals :

If p^(th), q^(th), r^(th) terms of a G.P are a,b,c then Sigma (q-r) log a=

a,b,c (all positive) are the p th, q th and r th terms of a geometric progression, then |{:(log _(e) a, p, 1), ( log _(e) b ,q, 1), ( log _(e) c, r,1):}| :a)pqr b)0 c) p + q + r d) pq + qr + rp

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If a,b,c are all positive, and are p^(th), q^(th) and r^(th) terms of a G.P., show that |("log"a,p,1),("log"b,q,1),("log"c,r,1)|=0 .

If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respectively of a G.P show that, |{:(,log a,p,1),(,log b,q,1),(,log c,r,1):}|=0

If a,b,c are all positive and are p-th,q-thand r-th terms of a G.P ., then show that |{:(loga,p,1),(logb,q,1),(logc,r,1):}|=0 .