Home
Class 12
MATHS
If two tangents can be drawn to the diff...

If two tangents can be drawn to the differentanches of hyperbola `x^2/1-y^2/4=1` from the point `(alpha,alpha^2)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If two tangents can be drawn the different branches of hyperbola (x^(2))/(1)-(y^(2))/(4) =1 from (alpha, alpha^(2)) , then

If two tangents can be drawn the different branches of hyperbola (x^(2))/(1)-(y^(2))/(4) =1 from (alpha, alpha^(2)) , then

If two tangents can be drawn the different branches of hyperbola (x^(2))/(1)-(y^(2))/(4) =1 from (alpha, alpha^(2)) , then

If two tangents can be drawn the different branches of hyperbola (x^(2))/(1)-(y^(2))/(4) =1 from (alpha, alpha^(2)) , then

If two distinct tangents can be drawn from the Point (alpha,2) on different branches of the hyperbola x^2/9-y^2/(16)=1 then (1) |alpha| lt 3/2 (2) |alpha| gt 2/3 (3) |alpha| gt 3 (4) alpha =1

If two distinct tangents can be drawn from the Point (alpha,2) on different branches of the hyperbola x^2/9-y^2/(16)=1 then (1) |alpha| lt 3/2 (2) |alpha| gt 2/3 (3) |alpha| gt 3 (4) alpha =1

If two distinct tangents can be drawn from the Point (alpha,2) on different branches of the hyperbola x^2/9-y^2/(16)=1 then (1) |alpha| lt 3/2 (2) |alpha| gt 2/3 (3) |alpha| gt 3 (4) alpha =1

If two perpendicular tangents can be drawn from the point (alpha,beta) to the hyperbola x^(2)-y^(2)=a^(2) then (alpha,beta) lies on

If two distinct tangents can be drawn from the point (alpha,1) on different branches of the hyperbola 25x^(2)-16y^(2)=400 then

From a point (2,alpha) tangents are drawn to the same branch of hyperbola (x^(2))/25-(y^(2))/16=1 , then the range of alpha epsilon(l_(1),l_(2)) then l_(2) is equal to_________