Home
Class 12
MATHS
If in triangle ABC, cosA=(sinB)/(2sinC),...

If in triangle ABC, `cosA=(sinB)/(2sinC)`, then the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , is

In triangleABC if cosA=sinB/sinC then the triangle is

In triangleABC , if cosA=sinB-cosC , then the triangle is

If in a !ABC , cosA=(sinB)/(2sinC) then the !ABC , is

If in a triangle ABC, 2cosA=sinBcosecC , then :

If in a triangle ABC, 2cosA=sinBcosecC , then

If in a triangle ABC, 2cosA=sinBcosecC , then

If A, B, C are the angles of a triangle ABC and if cosA=(sinB)/(2sinC) , show that the triangle is isosceles.