Home
Class 12
MATHS
Find the area of the parallelogram whose...

Find the area of the parallelogram whose diagonals are represented by the vectors
(i)`vec(d)_(1)= 3 hat(i) + hat(j) - 2 hat(k)` and `vec(d)_(2) = hat(i) - 3 hat(j) +4 hat(k)`
(ii) `vec(d)_(1)= 2 hat(i) - hat(j) + hat(k)` and `vec(d)_(2)= 3 hat(i) + 4 hat(j)-hat(k)`
(iii) `vec(d)_(1)= hat(i)- 3 hat(j) + 2 hat(k)` and `vec(d)_(2)= -hat(i)+2 hat(j).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of the parallelogram whose diagonals are represented by the vectors vec(d)_(1)=(2 hat(i) - hat(j)+ hat(k)) and vec(d)_(2) = (3 hat(i) + 4 hat(j) - hat(k)).

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Find the volume of the parallelopied whose co-terminus edges are represented by the vectors vec 1= 2 hat i+ hat j- hat k, vec 2,= hat i + hat 2j+ 3hat k and vec 3 =3 hat i - hat j+2 hat k

If vec(alpha ) = hat (i) - 2 hat (j) + 3 hat (k) , vec(beta) = 2 hat (i) - 3 hat (j) + hat(k) and vec(gamma) = 3 hat (i) + hat (j) - 2 hat (k) , find vec(alpha) . (vec(beta)xx vec (gamma)) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

Find the volume of a parallelopiped whose edges are represented by the vectors vec a = 2 hat i -3 hat j -4 hat k and vec b = hat i +2 hat j - hat k and vec c = 3 hat i + hat j + 2 hat k .