Home
Class 12
MATHS
For a positive integer n, let I (n) int ...

For a positive integer n, let `I _(n) int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx`
Find the value of `[I _(1) + I _(3) +I_(4)]` where [.] denotes greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

The value of (1)/(pi)int_(2 pi)^(0)[sqrt(2)sin x]dx where [.] denotes greatest integer function is

The value of int_(-g)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes greatest integer function is

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to