Home
Class 12
MATHS
If |veca|=4,|vecb|=2 and angle between v...

If `|veca|=4,|vecb|=2` and angle between `veca and vecb is pi/6 then (vecaxxvecb)^2` is (A) 48 (B) `(veca)^2` (C) 16 (D) 32

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca*vecb|=|vecaxxvecb| ,then angle between veca and vecb is :

If |veca*vecb|=|vecaxxvecb| , then the angle between veca and vecb is :

If |veca*vecb|=sqrt3|vecaxxvecb| ,then angle between veca and vecb is :

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

The angle between veca and vecb if vecaxxvecb=veca*vecb is :

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

If 2(veca.vecb)= |veca||vecb| then angle between veca and vecb equals to ,

If sqrt(3)|veca.vecb|=|vecaxxvecb| , then angle between veca and vecb is: