Home
Class 12
PHYSICS
An electric field is expressed as vec E ...

An electric field is expressed as `vec E = 2 hat i + 3 hat j`. Find the potential difference `(V_A - V_B)` between two points `A` and `B` whose position vectors are given by `r_A = hat i + 2 hat j and r_B = 2 hat i + hat j + 3 hat k`.

Promotional Banner

Similar Questions

Explore conceptually related problems

An electric field is expressed as vec(E) = 2hat(i) + 3hat(j) . Find the potential difference (V_(A) - V_(B)) between two point A and B whose position vectors are give by vec(r_(A)) = hat(i) + 2j and vec(r_(B)) = 2hat(i) + hat(j) + 3hat(k)

An electric field is expresed as vec(E)=2hat(i)+3hat(j) The potential difference (V_(A)-V_(B)) between two given by r_(A)=hat(i)+2hat(j) and r_(B)=2hat(i)+hat(j)+3hat(k) is

Find angle between the vectors ,When vec a = hat i -2 hat j +3 hat k and vec b = 3 hat i -2 hat j + hat k

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Find ( vec a+3 vec b).(2 vec a- vec b) , If vec a= hat i+ hat j+2 hat k and vec b=3 hat i+2 hat j- hat k

Calculate the area of a paralleogeram whose adjcent sides are given by the vectors : vec A = hat i- 2 hat j= 3 hat k , and vec B = 2 hat I = 3 hat j- hat k .

Find the shortest distance (S.D.) between the lines : vec r = hat i + hat j + lambda (2 hat i- hat j + hat k) and vec r = 2 hat i + hat j- hat k + mu (3 hat i - 5 hat j + 2 hat k) .

Find the vector whose length is 3 and which is perpendicular to the vectors vec a=3 hat i+hat j-4 hat k , vec b=6 hat i+5 hat j-2 hat k .

Find the angle between the vectors vec a and vec b where: vec a=2hat i-3hat j+hat k and vec b=hat i+hat j-2hat k

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).