Home
Class 12
MATHS
find 3- dimensional vectors overset(t...

find 3- dimensional vectors `overset(to)(v)_(1) , overset(to)(v)_(2), overset(to)(v)_(3)` satisfying
`overset(to)(v)_(1),overset(to)(v)_(1) =4, overset(to)(v)_(1).overset(to)(v)_(2)=-2overset(to)(v)_(1).overset(to)(v)_(3)-6`
`overset(to)(v)_(2).overset(to)(v)_(2)=2,overset(to)(v)_(2).overset(to)(v)_(3) =-5 , overset(to)(v)_(3).overset(to)(v)_(3)=29`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let overset(to)(u),overset(to)(v) " and " overset(to)(W) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(W)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(V)|=4" and " |overset(to)(W)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

Let overset(to)(u),overset(to)(v) " and " overset(to)(w) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(w)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(v)|=4" and " |overset(to)(w)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

If overset(to)(V) = 2oveset(to)(i) + overset(to)(j) - overset(to)(k) " and " overset(to)(W) = overset(to)(i) + 3overset(to)(k) . if overset(to)(U) is a unit vectors then the maximum value of the scalar triple product [overset(to)(U) , overset(to)(v) , overset(to)(W)] is

| overset(to)(a) | = 3, | overset(to)(b) | = sqrt(2)//3 and | overset(to)(a) xx overset(to)(b) | =1 . find the angle between overset(to)(a) and overset(to)(b)

If overset(to)(A) =(1,1,1) , overset(to)( C) =(0,1,-1) are given vectors then a vectors overset(to)(B) satisfying the equations overset(to)(A) xx overset(to)(B) = overset(to)( C) " and " overset(to)(A) ". " overset(to)(B) =3 is ………