Home
Class 12
MATHS
If (1)/(log(2)a)+(1)/(log(4)a)+(1)/(log(...

If `(1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+`
`(1)/(log_(2^(n))a) = (n(n+1))/(k)` then k `log_(a)2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda)) then lambda equals

If (1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda)) then lambda equals

(1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(nog_(4)N)+...+(1)/(log_(2011)N)=(1)/(log_(2011)N)

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

Series (1)/(log_(2)^(2)) + (1)/(log_(4)^(4)) + (1)/(log_(8)^(4)) + …..+ (1)/(log_(2^(n))4) =……….

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=