Home
Class 11
MATHS
The range of the function f(x)=(e^(x)-1)...

The range of the function `f(x)=(e^(x)-1)/(e^(x)+1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=e^(x)-e^(-x) is

The range of the function f(x)=e^(-x)+e^(x), is

The range of the function f(x)=(e^(x)-e^(|x|))/(e^(x)+e^(|x|)) is

The range of the function f(x)=(e^(x)-e^(|z|))/(e^(x)+e^(|x|)) is (-oo,oo)(b)[0,1](-1,0](d)(-1,1)

The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is (a) (-oo,oo) (b) [0,1] (-1,0] (d) (-1,1)

Determine whether the function f(x) = x((e^(x)-1)/(e^(x)+1)) is even or odd

the function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is

Find the range of the function f(x) = (e^x - e^-x) .