Home
Class 6
MATHS
(m^(2)-n^(2))^(2)+2m^(2)n^(2)...

`(m^(2)-n^(2))^(2)+2m^(2)n^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (2.5p-1.5q)^(2)-(1.5p-2.5q)^(2)(m^(2)-n^(2)m)^(2)+2m^(3)n^(2)

The roots of the equation l^(2)(m^(2)-n^(2))x^(2)+m^(2)(n^(2)-l^(2))x+n^(2)(I^(2)-m^(2))=0 are

Factorise : 2(m^(2)+n^(2))^(2)-3mn(m^(2)+n^(2))-2m^(2)n^(2)

If sintheta=(m^(2)-n^(2))/(m^(2)+n^(2)) , then tantheta=?

If a cos theta+b sin theta=m and a sin theta-b cos theta=n, then a^(2)+b^(2)=m^(2)-n^(2)(b)m^(2)n^(2)(c)n^(2)-m^(2)(d)m^(2)+n^(2)

If tan theta=(m)/(n) , show that (m sin theta-n cos theta)/(m sin theta+n cos theta)=(m^(2)-n^(2))/(m^(2)+n^(2))

If tan theta+sin theta=m and tan theta-sin theta=n then m^(2)-n^(2)=4mn(b)m^(2)+n^(2)=4mnm^(2)-n^(2)=m^(2)+n^(2)(d)m^(2)-n^(2)=4sqrt(mn)

If (7m+2n)/(7m-2n)=5/(3) use properties of proportion to find (i) m:n (ii) (m^(2)+n^(2))/(m^(2)-n^(2))