Home
Class 12
MATHS
If cosA=(3)/(5), cosB=(5)/(13), cosC=(4)...

If `cosA=(3)/(5), cosB=(5)/(13), cosC=(4)/(5)`, then the ratio of sides of triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

If (a)/(cosA)=(b)/(cosB)=(c )/(cosC) , then triangle is

In DeltaABC,a/cosA=b/cosB=c/cosC,ifb=2 then the area of the triangle is

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is