Home
Class 12
MATHS
The equation (x^2)/(9-lambda)+(y^2)/(4-l...

The equation `(x^2)/(9-lambda)+(y^2)/(4-lambda)=1` represents a hyperbola when `a lt lambda lt b` then `[(b+a)/(b-a)]=` where [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

71.The equation (x^(2))/(16-lambda)+(y^(2))/(9-lambda)=1 represents a hyperbola When a a

If (x^(2))/(lambda+3)+(y^(2))/(2-lambda)=1 represents a hyperbola then

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

Equation (2 + lambda)x^2-2 lambdaxy+(lambda -1)y^2-4x-2=0 represents a hyperbola if

If (lambda-2)x^(2)+4y^(2)=4 represents a rectangular hyperbola then lambda =

If (lambda-2)x^(2)+4y^(2)=4 represents a rectangular hyperbola then lambda=

If (lambda-2)x^(2)+4y^(2)=4 represents a rectangular hyperbola then lambda=

The equation x^(3)-6x^(2)+9x+lambda=0 have exactly one root in (1,3) then [lambda+1] is (where [.] denotes the greatest integer function)

If f:[-4,4] rarr R where f(x)=x^(3)+tan x+[(x^(2)+1)/(lambda)] is an odd function then the range of values of lambda is :- (where [.] denotes greatest integer function)

If the equation (x^(2))/( 3 - lambda) + (y^(2))/(lambda - 8) + 1 = 0 represents an ellipse, then (i) lambda lt 8 (ii) lambda gt 3 (iii) 3 lt lambda lt 8 (iv) lambda lt 3" or "lambda gt 8