Home
Class 12
MATHS
Consider an ellipse x^2/a^2+y^2/b^2=1 L...

Consider an ellipse ` x^2/a^2+y^2/b^2=1` Let a hyperbola is having its vertices at the extremities of minor axis of an ellipse and length of major axis of an ellipse is equal to the distance between the foci of hyperbola. Let `e_1` and `e_2` be the eccentricities of an ellipse and hyperbola respectively. Again let A be the area of the quadrilateral formed by joining all the foci and A, be the area of the quadrilateral formed by all the directrices. The relation between `e_1 and e_2` is given by

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a gt b) . A hyperbola has its vertices at the extremities of minor axis of the ellipse and the length of major axis of the ellipse is equal to the distance between the foci of hyperbola. Let e_(1) and e_(2) be the eccentricities of ellipse and hyperbola, respectively. Also, let A_(1) be the area of the quadrilateral fored by joining all the foci and A_(2) be the area of the quadrilateral formed by all the directries. The relation between e_(1) and e_(2) is given by

The eccentricity of an ellipse, the length of whose minor axis is equal to the distance between the foci, is

If the length of the minor axis of an ellipse is equal to the distance between their foci, then eccntricity of the ellipse is _

If the minor axis of an ellipse is equal to the distance between its foci, prove that its eccentricity is 1/sqrt(2) .

Find the eccentricity of the ellipse if its minor axis is equal to the distance between the foci.

If the distance between the foci of an ellipse is equal to its minor axis, then its eccentricity is

The ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(A^(2))-(y^(2))/(B^(2))=1 are given to be confocal and length of mirror axis of the ellipse is same as the conjugate axis of the hyperbola. If e_1 and e_2 represents the eccentricities of ellipse and hyperbola respectively, then the value of e_(1)^(-2)+e_(1)^(-2) is

The ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(A^(2))-(y^(2))/(B^(2))=1 are given to be confocal and length of mirror axis of the ellipse is same as the conjugate axis of the hyperbola. If e_1 and e_2 represents the eccentricities of ellipse and hyperbola respectively, then the value of e_(1)^(-2)+e_(1)^(-2) is

The ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(A^(2))-(y^(2))/(B^(2))=1 are given to be confocal and length of mirror axis of the ellipse is same as the conjugate axis of the hyperbola. If e_1 and e_2 represents the eccentricities of ellipse and hyperbola respectively, then the value of e_(1)^(-2)+e_(1)^(-2) is