Home
Class 12
MATHS
Let f (x) = lim (n to oo) n ^(2) tan (ln...

Let `f (x) = lim _(n to oo) n ^(2) tan (ln(sec""(x)/(n )))and g (x) = min (f(x), {x}}`
(where {.} denotes fractional part function)
Number of points in `x in [-1, 2]` at which g (x) is discontinous :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = lim _(n to oo) n ^(2) tan (ln(sec""(x)/(n )))and g (x) = min (f(x), {x}} (where {.} denotes fractional part function) Left derivative of phi(x) =e ^(sqrt(2f (x)))at x =0 is:

Let f (x) = lim _(n to oo) n ^(2) tan (ln(sec""(x)/(n )))and g (x) = min (f(x), {x}} (where {.} denotes fractional part function) Left derivative of phi(x) =e ^(sqrt(2f (x))) at x =0 is:

Let f(x)=2x-{(pi)/(n)} and g(x)=cos x where {.} denotes fractional part function, then period of gof (x) is -

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

prove "lim"_(xvecoo)(ln x)/([x])="lim"_(xvecoo)([x])/(ln x) where [.] is G.I.F. & {.} denotes fractional part function

prove "lim"_(xvecoo)(ln x)/([x])="lim"_(xvecoo)([x])/(ln x) where [.] is G.I.F. & {.} denotes fractional part function

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If lim_(x rarr oo){In x} and lim_(x rarr oo){ln x} exists finitely but they are not equal (where {:} denotes fractional part function),then: :