Home
Class 11
PHYSICS
दो सदिशों vec(A) व vec(B) के परिमाण क्रम...

दो सदिशों `vec(A)` व `vec(B)` के परिमाण क्रमशः 4 मात्रक व 3 मात्रक तथा इनके बीच कोण `60^(@)` है । ज्ञात कीजिये -
(i) `vec(A)+vec(B)` का परिमाण व दिशा
(ii) `vec(A)-vec(B)` का परिमाण व दिशा |

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= 3i - 4j and B= - I - 4j , calculate vec(A) + vec(B) and |vec(A) + vec(B)|

If |vec(a)| = 3, |vec(b) = 4 and |vec(a) + vec(b)| = 1 , then |vec(a) - vec(b)| =

vec A=6i+5j and, vec B=(4i-3j) ,then (vec A+vec B)*(vec A-vec B)=

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5 , then what si the value of |vec(a) + vec(b)| =?

If |vec(a)| = sqrt(3), |vec(b)| = 2 and angle between vec(a) and vec(b) is 60^(@) , find vec(a).vec(b) .

If vec(a)= 2vec(i)-3 vec(j) + vec(k). vec(b)= vec(i) + 4vec(j)- 2vec(k) , then find (vec(a) + vec(b)) xx (vec(a) - vec(b)) .