Home
Class 12
MATHS
If the ellipse (x^2)/4+(y^2)/1=1 meets t...

If the ellipse `(x^2)/4+(y^2)/1=1` meets the ellipse `(x^2)/1+(y^2)/(a^2)=1` in four distinct points and `a=b^2-10 b+25` , then the number of integral values of `b` is `3` 2. `4` 3. `6` 4. `1` 5. infinite

Promotional Banner

Similar Questions

Explore conceptually related problems

If the ellipse (x^(2))/(4)+(y^(2))/(1)=1 meets the ellipse (x^(2))/(1)+(y^(2))/(a^(2))=1 in four distinct points and a=b^(2)-10b+25, then the number of integral values of b is 32.43.64.15. infinite

If the ellipse (x^2)/4+y^2=1 meets the ellipse x^2+(y^2)/(a^2)=1 at four distinct points and a=b^2-5b+7, then b does lies in

If the ellipse (x^(2))/( 4) + y^(2) =1 meets the ellipse x^(2) +(y^(2))/( a^(2)) =1 in four distinct points and a= b ^(2) - 5b+ 7, then b does not lie in

If the ellipse (x^2)/4+y^2=1 meets the ellipse x^2+(y^2)/(a^2)=1 at four distinct points and a=b^2-5b+7, then b does not lie in [4,5] (b) (-oo,2)uu(3,oo) (-oo,0) (d) [2,3]

Suppose the ellipse x^2/2+y^2=1 and the ellipse x^2/5+y^2/a^2=1 where a^2=b^2-8b+13 intersect in four distinct points, then number of integral values of b is

The line x= t^(2) meet the ellipse x^(2) +(y^(2))/( 9) =1 in the real and distinct points if and only if

If the ellipse (x^2)/4+y^2=1 meets the ellipse x^2+(y^2)/(a^2)=1 at four distinct points and a=b^2-5b+7, then b does not lie in (a) [4,5] (b) (-oo,2)uu(3,oo) (c) (-oo,0) (d) [2,3]

If the ellipse (x^(2))/(4)+y^(2)=1 meets the ellipse x^(2)+(y^(2))/(a^(2))=1 at four distinct points and a=b^(2)-5b+7, then b does not lie in [4,5] (b) (-oo,2)uu(3,oo)(-oo,0)(d)[2,3]