Home
Class 12
MATHS
Let f(x)=f(a-x) and g(x)+g(a-x)=4 then i...

Let `f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx` is equal to (A) `2int_0^af(x)dx` (B) `int_0^af(x)dx` (C) `4int_0^af(x)dx` (D) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

If int g(x)dx = g(x) , then int g(x){f(x) - f'(x)}dx is equal to

int_0^(2a)f(x)dx is equal to 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

Prove that int_0^af(x)dx = int_0^af(a-x)dx

int_0^(2a)f(x)dx is equal to a. 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to