Home
Class 12
MATHS
The number of negative integral values o...

The number of negative integral values of x satisfying the inequality `log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of integral values of x satisfying the inequality 3((5)/(2))log_(3)(12-3x)

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

Sum of all integral values of x satisfying the inequality (3((5)/(2))log(12-3x) is.....

The number of integral values of x satisfying the inequation x^(2)-|x|-6<=0 is

Number of integral values of x which satisfy the inequality log_(x+(1)/(x))(1+5x-x^(2))>0, is :

Nurmber of non negative integral values of x satisfying the inequality (2)/(x^(2)-x+1)-(1)/(x-1)-(2x-1)/(x^(3)+1)>=0 is

If x=(4)/(9) then number of distinct integral values of x satisfying the inequality log_(a)(x^(2)-x+2)>log_(a)(-x^(2)+2x+3) ,is

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

Find the values of x satisfying the inequalities: log_(2)(x^(2)-24)>log_(2)(5x)