Home
Class 12
MATHS
The circles x^(2)+y^(2)-10x+16=0 and x^(...

The circles `x^(2)+y^(2)-10x+16=0 and x^(2)+y^(2)=r^(2)` intersect each other in two distinct points if

Promotional Banner

Similar Questions

Explore conceptually related problems

The circleS x^(2)+y^(2)-10 x+16=0 and x^(2)+y^(2)=r^(2) intersect each other in distinct points, if

The circles x ^(2) + y ^(2) -10 x + 16=0 and x ^(2) + y ^(2) =r ^(2) intersect each other in two distinct points if

The circles x^(2)+y^(2)-10x+16=0 and x^(2)+y^(2)=a^(2) intersect at two distinct points if

The circles x^(2)+y^(2)-10x+16=0 and x^(2)+y^(2)=a^(2) intersect at two distinct point if

Statement I Circles x^(2)+y^(2)=4andx^(2)+y^(2)-6x+5=0 intersect each other at two distinct points Statement II Circles with centres C_(1),C_(2) and radii r_(1),r_(2) intersect at two distinct points if |C_(1)C_(2)|ltr_(1)+r_(2)

Statement I Circles x^(2)+y^(2)=4andx^(2)+y^(2)-8x+7=0 intersect each other at two distinct points Statement II Circles with centres C_(1),C_(2) and radii r_(1),r_(2) intersect at two distinct points if |C_(1)C_(2)|ltr_(1)+r_(2)

The circles : x^2+y^2 - 10x + 16 =0 and x^2+y^2 =a^2 : intersect at two distinct points if :